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GRAPHIC AND MECHANICAL COMPUTATION OF THICKNESS OF STRATA 
AND DISTANCE TO A STRATUM. 

By J. B. MERTlE, Jr. 

INTRODUCTION. 

Two problems that constantly confront the 
stratigraphic and structural geologist are the 
computation of the thickness of a geologic 
secti<>n and the computation of distanoe to a 
stratum from some designated point at the 
~urface when the position of the outcrop of 
that stratum is known. The solution of each 
of these problems is divisible into three parts­
a geometric solution, a trigonometric generali­
zation, and simplified methods of computation. 
It is the purpose of the present paper to con­
sider these three phases of each of the two 
problems above mentioned. 

Analyses of these two problems, so essen­
tially a part . of the geologist's work, have 
doubtless been previously made, but it is odd 
that so little has been published on this sub­
ject, and particularly significant that most of 
the published material has been of recent 
ongin. The obvious inference is that we are 
approaching a period in the development of 
geologic science when accurate data will be 
considered more and more essential to correct 
stratigraphic interpretation; and the recent 
interest shown in these and related problems 
is an index of the general appreciation of this 
fact by geologists. In other words, geology is 
changing progressively from a qualitative to a 
quantitative science, and older methods are 
giving way . to newer ones more adapted to 
present needs. 

The only fault that may be found with the 
~a~eri~l so far published on this · subject lies 
~ Its Incompleteness. In some of the pub-

. hshed papers the writers have not worked out 
general formulas but have confined themselves 
to the consideration of special cases the solu­
tion of which, though useful, is not of universal 
application. In other articles, in which univer­
sal solutions have been evolved the treatment . ' 
IS not well balanced because the above-men-
tioned three phases of each of the two main 

problems have not been considered adequately. 
Thus, a geometric solution is of interest, but 
if that alone comes within the scope of the arti­
cle its value will be impaired because no for­
mula is deduced, and the geologist will have 
to repeat the solution for every individual set 
of data. The trigonometric solution is of much 
more value, but it will not be used by many 
workers because it requires mathematical com­
puta~ion. It is very desirable that graphic or 
mechanical methods be employed in the solu­
tion of all geologic formulas, first because in 
using such methods no knowledge of trigo­
nometry is required, second because of the 
saving in time they permit, and third because 
the resulting solutions are well within the limits 
of accuracy imposed by the nature of geologic 
observations. 

The principal publications known to the 
writer in which the problems of thickness of 
strata and depth to a stratum are considered 
are as follows: 

Hayes, C. W., Handbook offield geology, 1909. 
Roe, J. W., Application of descriptive geometry to 

mining problems: Am. Inst. Min. Eng. Trans., vol. 41, 
pp. 512-533, 1911. 

Smith, W. S. T., Some graphic methods for the solution 
of geologic problems: Econ. Geology, vol. 9, No.1, 1914. 

Palmer, H. S., Nomographic solutions of certain strati­
graphicmeasurements: Econ. Geology, vol.ll, No.1, 1916. 

Palmer, H. S., New graphic method for determining the 
depth and thickness of strata and projection of dip: U. S. 
Geol. Survey Prof. Paper 120, pp. 123-128, 1919. 

In Hayes's Handbook trigonometric for­
mulas are derived, but only that special case 
is considered where the field traverse is made 
perpendicular to the strike of the beds. Both 
Roe and Smith have made descriptive geometric 
solutions, but neither derives formulas there­
from. In his first article Palmer has derived 
the general formula for the calculation of 
thickness of strata and developed three-variable 
alinement charts for its graphic solution. In 
his second article he has developed three-vari-
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40 . SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1921. 

able alinement charts for the solution of both 1 in elevation between the two ~tations, (c) slope 
thickness and depth of beds, but only in the distance between the two stations, (d) hori­
plane perpendicular to the strike of the for- zontal distance between the two st~tions. 
mation. The present paper is devoted to four Therefore four sets of data are given, and these 
topics, as follows: together with the answer (thickness of strata) 

1. The graphic and numerical solution of the will necessarily produce a trigonom~tric equa­
problem of thickness of strata and the con- tion of five variables. 
struction of a five-variable alinement chart for 
the graphic solution of the general formula. 

2. The graphic and numerical solution of 
the problem of distance to a stratum, and the 
construction of a five-variable alinement chart 
for the graphic solution of the general formula 
for depth to a stratum. 

3. The construction of a chart for the graphic 
solution of a right triangle, to be used in con­
junction with the two charts above mentioned. 

4. The construction of a trigonometric com­
puter for the graphic solution of all trigono­
metric formulas that may be used in geologic 
field work. 

THICKNESS OF STRATA. 

OUTLINE. 

It is required to find the thickness of geo­
logic strata lying between two known points, 
when the following data are given: 

1. The horizon tal and vertical location of 

GEOMETRIC CONSTRUCTION. 

In the first publication by Palmer, previously 
mentioned, the general formula for this prob­
lem is derived. A different solution using 
descriptive geometry, from which the formula 
is derived, is here used. It is well known that 
two cases requiring this formula exist-(1) 
where the dip of the beds and the slope of the 
hillside are in opposite directions, which is the 
more usual condition; and (2) where the dip 
of the beds and the angle of slope of the hillside 
are in the same direction. The solution for the 
first of these cases is here given. 

In figure 2, let AB be a horizontal reference 
plane which passes through the station sl. 
Let s be the slope distance between the two 
stations sl and s2 (traversed distance)' h the 
horizontal distance between the two stations, 
e the difference in elevation between the two 

two points, which may be considered the begin- stations: and o- the angle of slope of the hillside. 
ning and end points of a traverse. Let a be the azimuth angle of the traverse, or 

1\1 
T 

angle . between the di­
rection of traverse and 
the strike of the forma­
tion, and let o be the 
angle of dip of the rocks. 
It will be assumed that 
sand o- are given. By . 
revolving the right tri­
angle sls2o from its 
vertical position down­
ward goo on OS as an 
axis into the plane of 
reference, e and h may 
also be measured. 

A------.;,___,::~:___________________ Let S1T be the strike 
6 

of the beds. It will also 
FIGURE 2.-Geometric representation of the thickness of a stratum when the dip of the stratum and the rela- be the trace of the base 

tive positions of a point on the upper surface of the stratuin and another on the lower surface are given. 
of the stratum to be 

2. The azimuth angle between the strike I measured upon the reference plane. Through 
' of the rocks and a line joining the two points. 0, the horizontal projection of s2 upon the 

3. The dip of the rocks. . reference plane, draw OM parallel to S1T. Lay 
In connection with No. 1, any two of the fol- off ON= OS2 =e. Then, e and o being known, 

lowing measurements will suffice: (a) Angle of the right triangle NOL, which has been re­
slope between the two stations, (b) difference volved downward goo on OL a~ an axis into the 
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plane of reference, may be measured, thus deter­
mining the distance OL. The line LK drawn 
parallel to S1T is the trace of the top of the 
stratum upon the rtferenee plane. Draw a 
line connecting and perpendicular to LIC and 
S1T. Such a line, EH, is the distance between 
the traces of the outcrops of the base and top 
of the stratum, upon the horizontal plane. 
When o and EH are known the right triangle 
HDE may be revolved 90° upward on EH as an 
axis into the plane of reference and the thick­
ness of the stratum (DE or t) may be measured. 

TRIGONOMETRIC FORMULA. 

The trigonometric solution from this con­
struction is as follows: 

Hence 

t= (HR +RE) sin o 
HR=h sin a and h=8 cos u 

. ·. HR = 8 sin a cos u 

RE=-e- and e=8 Sill 
tan o 

. RE=8 Sill u 
· · tan o " 

( 
· 8 Sill u) . 

t= 8 sin a cos u+ tan 0 s1n o 

t=8 (sin a sino cos u+cos o si u) 

When the dip of the beds and the sl pe of the 
hillside are in the same direction, the + in the 
formula changes to - . The gener formula 
therefore is 

t=8 (sin a sino cos u±cos o sin <r) ___ (1) 

GRAPHIC REPRESENTATION OF THE 

GENERAL PRINCIPLE. 

Computations may be performe nulll;_er­
ically, graphically, mechanically, or y a com­
bination of methods. Numerical solutions 
of formulas require the use of lo arithmic 
tables and are avoided when possi le chiefly 
because they require too much ti e. It is 
highly desirable to represent formul s graph­
ically or to compute them by some · echanical 
device based on a graphic represe tation of 
the functions involved. If some on formula 
is used a great deal, it should pref rably be 
represented graphically, thus saving f.ueh time 
in computation and reducing greatl the lia­
bility Jof errors in the result. If a ariety of 
formulas are being used, it will p rhaps be 
found more convenient to perform the com-

putations by means of some universal com­
puting machine, such as ·a slide rule. 1 

The form:ula for the ~hickness of a stratum, 
as above given, is one that may be used re­
peatedly in certain kinds of stratigraphic work 
or only occasionally in other kinds but cer­
tainly is of use to every stratigraphic geologist. 
There are several objections to the numerical 
computation of this formula. First, too much 
time is required; second, the use of figures 
introduces a greater liability to error than a 
graphic computation; and third, the . accuracy 
of th~ answer, if five-place logarithmic tables 
are used, is much greater than the character of 
the original data justifies. The matter of 
needless accuracy is often overlooked by geol­
ogists, with the result that meaningless figures 
and incongruous results are sometimes pub­
lished. In general it is true that in formulas 
used by geologists in the field and office some 
one of the variables will depend · on an obser­
vation of the strike or dip of rocks. The 
answer to the formula should obviously be no 
m.ore accurate than the least accurate of the 
component variables. For example, it is very 
doubtful whether determinations of strike or 
dip can be made with an error of less than 1°. 
But even if 1° represents the maximum prob­
able errnr in careful work, it must be remem­
bered that geologie strata do not by any means 
have mathematically perfect surfaces. There­
fore an additional possibility of error is intro­
duced in the liability of the measured direction 
of strike or dip of surface to change within a 
comparatively short distance, thus vitiating 
a most carefully made measurement. Extreme 
accuracy in computation of geologic formulas 
is therefore neither needful nor desirable, and 
gt'aphic methods should be used. 

The graphic representation of a formula is 
commonly accomplished by means of Cartesian 
coordinates, ·but this system has serious draw­
backs when equations of more than two varia­
bles are to be plotted. When equations ·of 
three variables must be represented, a system 
of curves must be drawn and. an awkward 
interpellation used. For equations of mor'e 
than three variables Cartesian coordinates are 
not suitable. The equation 

t = 8 (sin a sin o cos u ± cos o sin u) 

comprises five variables, namely, t, 8, a, o, and 
u. Equations of three variables are most easily 
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represented by means of a nomograph or aline­
n:-ent chart, which in reality is a system of plot­
ting by means of parallel coordinates. Three 
excelle?t treatments of this method of graphic 
analysis have been written, by D'Ocagne 1 

Lipka,Z and Peddle,3 and the reader is referred 
to their publications for an understanding of 
the theory of the alinement chart. 

In plotting the above formula Palmer 4 used 
their three-variable nomograms, thus necessa­
rily solving the formula by several independent 
operations. Thus sin 8 and cos CJ were mul­
tiplied in one operation, and the product mul­
tiplied by sin a in a second operation. Cos 8 
and sin CJ were multiplied in a third operation. 
~he products of the second and third opera­
tiOns were then added numerically by a fourth 
operation, and this S}lm multiplied by s in a 
fifth operation, to solve for t. Three charts 
were required for these operations one to mul­
tiply sines by cosines, a second ' to multiply 
numbers by sines, and a third to multiply ;num­
bers by numbers. Moreover, as the nomo­
graphic solution with parallel scales, which is 
the one employed, is essentially a method of 
addition and subtraction, and as all the above­
mentioned operations that were performed 
graphically involve multiplication all the cal­
ibrated scales were ;necessarily' logarithmic 
scales. A serious drawback exists in the use of 
logarithmic scales, because the accuracy of the 
reading is greater at one end of the scale than 
at the other, and this weakness is specially pro­
nounced in logarithmic scales of the trigo­
nometric functions. By the method here used 
the solution of the equation ' 

t = 8 (sin a sin 8 cos CJ ± cos 8 sin (J) 

is ~ffected by a compound operation, in which 
a single chart and natural instead of logarith­
mic functions are employed. 

The above equation, containing five varia­
riables, can not be plotted directly by any 
method in two dimensions known to the writer 
?ut by separating it into two parts and equat~ 
Ing ea?h of these to some auxiliary variable, the 
equatiOn may be readily charted. Thus the 

1 D'Ocagne, Maurice, Traite de nomographic Paris Gauthier-Villars 
~~ ' ' ' 

2 Lipka, Joseph, Graphical and mechanical computation New York 
1918. ' ' 

3 Peddle, J. B., The construction of graphical charts 2d ed. New York 
1919. ' ' ' 

t Palmer, H. S., Nomographic solutions of certain stratigraphic meas­
urements: Econ. Geology, vol. 11, 1916. 

equation may be written m two parts as 
follows: 

t'=!__ s ---------------- (2) 

t' =sin a sin 8 cos CJ ± cos 8 sin CJ __ _ (3) 

where t' is the introduced auxiliary variable. 
Equation (2) is a problem in divisio~ or when . ' 
written t=t' s, a problem in multiplication and 
therefore can not be plotted with natural scales 
if an alinement chart with parallel scales is used. 
By employing a nomographic Z chart, how­
ever, natural scales may be employed in multi­
plication and division, and this is the method 
which has been used. 

Equation (3), however, is well adapted to 
graphic representation by an alinement chart 
with parallel scales, as the primary operation 
to be performed is addition or subtraction as in­
dicated by the symbol ±. This equation', how- . 
ever, presents a difficulty in that it expresses 
a relationship between four variables-that is 
' ' t , a, 8, and CJ. If one of these variables could 

be regarded as a constant, the equation would 
be reduced to a three-variable type. The 
obvious solution consists in assigning to one 
variable a series of fixed values and com­
puting the resulting curves for each particular 
value. Two variables will be plotted on two 
parallel scales, and a third variable, whose 
position is partly determined by the fixed value 
assigned to the fourth variable, will be plotted 
between the two parallel scales. For each 
fixed value assigned to the fourth variable a 
different curve of the third variable will be de­
veloped, and the composite result will be a series 
of curves expressing the third variable in terms 
of the fourth. These curves may be joined to­
gether by a set · of auxiliary curves, drawn 
through points of equal value of the third va­
ris,ble, and a gridwork of intersecting curves 
will be formed which will express graphically 
the true relationship between the third and 
fourth variables. 

In th0 practical application of this method 
the variable t' is assigned to one of the outer 
parallel scales, in the plotting of both equations 
(2) and (3). The same scale modulus is used 

' and as both solutions involve only natural 
functions, the scale oft' for each solution is the 
same, and a common support for the scale t' 
may be used. Three parallel supports are 
therefore used to plot the variables a, t', and t. 
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I 

The variables 8 and (]' are expressed in a grid­
work of curves lying between a and t, and the 
Viariable s is plotted upon a diagonal line con­
necting opposite ends of the t' and t scales. As 
no numerical value oft' is required, the support 
of the t'' scale is not calibrated. Thus in the 
operation of the chart a point upon the a scale 
representing some value of a is connected by a 
straight line with a point which represents given 
values of 8 and(]' in the gridwork of curves and 
produced to meet the uncalibrated scale t'. 
The intersected point is then connected by an­
other straight line with a point on the diagonal 
line representing some value of s and projected 
to the t scale, the read~ng on which shows di­
rectly the thickness of the stratum, vein, or 
formation. 

MATHEMATICAL ANALYSIS. 

EQUATION (2). 

The equation t = t' s may be written as 

};_ (u) = fz (v) ·fa (w) 

where t=u, t'=v, and s=w. In figure 3, lett' 
and t be plotted upon two parallel straight-line 
scales, oppositely directed. The diagonal line 
joining the zero ends of these two scales will be 
the locus of the scale z and will be considered 
to have a length of k. Draw any nomographic 
index line joining the t' and t scales and inter­
secting the z scale. In the diagram, 

y : x. : :. k- z : z 

z 
x=k-zY 

The above equation is evidently in the form 
j 1 (u) = j 2 (v) ·Jaw. Therefore, assigning scale 
moduli of m1 and m2 respectively toft (u) and 

] 2 (v), we may say that 

x = m1j 1 (ru) and y = m2fz. (v') 

As t' and therefore t and s must be plotted as 
natural functions, in order to be coordinate 
with the chart of equation (3), the Z type of 
alinement chart is used. The method of analy­
sis is that used by Lipka; 5 Hence the equation 
becomes 

or 

ft (u) ml ~z~ z) . fz (v) 

5 Lipka, Joseph, Graphical and mechanical computation, pp. 65-66, 
New York, 1918. 

Therefore 
mzZ fa (w) rl (k-z) 

and from the solution of this equation it is 
I 

found that 

b = k ilf i ~ -- -- ---- -- ( 4) 
m13w mz 

From equation (4), by substituting the specified 
moduli and valljleS ofj3(w), a series of values of 
z can be computed, ·which will represent the 
calibration of the diagonal scale, or scale of s. 

I 
EQUATION (3). 

Consider the I positive form of equation (3) 
that is to be plotted: 

t' =sin a sin 8 cos (]'+cos 8 sin(]' 
or 

t'- sin a1 ~sin 8 cos(]')= cos 8 sin (]' 

If some definite value is assigned to o-, so that 
cos (]' and sin (]' become temporarily constants, 
the equation mhy be written 

f1(u) -fz(v). f3(w) =f4(w) 

where t' =u, a=v, and 8=w. In this form we 
have an equation of three variables, one of 

t' . ' 
I ' 

I 

I 

t 
I 

/ 

/ 
/ 

/ 
/ 

/ 

// 1( 

/ / 
/ / 

// // 

// // 

/ z // 
/ / 

/ / 
/ / 

/ / 

.... - .... J../ // 

/''-.. 
// / " ................................ 

//Jc/ ' t 

FIGURE 3.-Dir.gram to illustrate the method of calibrating the diagonal 
' scale of a Z chart. -

whlch (w) occrlrs on both sides of the equation 
as two differeh.t fun~tions-that is, fa(w) and 
J:(w). Such an equation, when plotted as an 
alinement chdrt, will require two parallel 
straight-line scales and one curvilinear scale. 
The two parallel straight-line scales, represent­
ing the functioil1S j 1 (u) andfz(v), may be drawn 
and calibra teq in the ordinary manner used 
in building the simpler type of alinement 
chart, but th~ curvilinear scale representing 
the two functifns of the variable w must either 
be projected graphically or computed by some 

j 
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system of coordinates. The latter procedure 
is here shown, the solution given by Lipka 6 

being followed very closely. 
In figure 4, let a and t' be plotted on two 

parallel straight lines, as shown; and let o be 
represented by some hypothetical curvilinear 
line. Let the zero point of each of the two 
parallel scales be connected by a base line, 
whose length is ky· and let the two outer scales 
be so placed that this base line lies perpendicu­
lar to both. In this way a system of rectan­
gular Cartesian coordinates will be assured. 
Take for an origin of such a coordinate system 
the intersection of k with the t' scale. Draw 
any nomdgraphic index line connecting the a 

and t' scales and cutting the o scale. From 
the intersection of the index line with o, draw 
a line parallel to k to meet the a scale and 
another parallel to the a scale to meet k. 
From the intersection of the index line with 

a 

Then in order to satisfy the equation, it IS 

necessary that 

Z1 mtf;(w) d kz j' ( ) 
k- zt 1nz an k- zt = mt 4 w 

Solving the first equation, we find that 

zt= k~~fa lu( ) ___________ (5) 
mz mtaw 

And solving the second equation and sub­
stituting in it the value of z1 frome quation (5), 

we find that m m J: (w) 
z= 1nz~in1j; (w) ----------- (6) 

The values z and z1 are the rectangular co­
ordinates of any point on the curvilinear scale, 
representing a definite value of o, measured 
from the intersection of k and the t' scale as 
an origin. The locus of the curvilinear scale 
o can then be determined, for a series of as­
::signed values of o will give the coordinates of 

a series of points which may be joined 
together into a smooth curve. 

To plot such a curve, however, a fixed 
value was assigned to the variable u. There­
fore for every assigned value of u anew curve 
will result. In the preparation of the chart 
a series of such curves may be computed 
for a regular series of values of u. If only 

t a single curve were charted it would be cali­
f bra ted in terms of o, in a way similar to the 

. l_ ... -_ -- - -_ -__ -_-_-__ -_-_-_ -__ -_~_-_ -_ -----,-k,-_-_ _ -_-_ -_ _ -_..L_ '----__ ...1._-_-_ -__ -_-_-_-_ -____ __J-,~ • parallel straight-line scales. But with a se-
FIGURE 4.-Diagram. to illustrate the method of determining the locus of the ries of such curves the points on each curve 

curvilinear scale in an alinement chart consisting of two parallel straight- that represent like values of 0 are J. oined 
line scales and a curvilinear scale. ' 

together, forming auxiliary intersecting 
the t' scale, draw a line parallel to k. In the curves that may be regarded as loci of definite 
diagram, values of o. The original curves may then be 

Y- z : z- x : : k- zt : Zt regarded as loci of definite values of u, and we 

z1y-zz1 =kz-kx-zz1 +z1x 

kx-z1x+z1 y=kz 

(k-z1) x-z1y=kz 
\ 

Z1 kz 
x+--y=-­k-z1 k-z1 

This equation is evidently in a form similar 
to the one t~ be plotted--:-that is, 

ft(u) -};(v).fa(w) =h(W) 

Therefore, assigning scale moduli of m1 and 1nz 
respectively' toft(u) and};(v), we may say that 

x=mJ,.(u) and y= -m2/z(v) 

6 Lipka, Joseph, op. cit., pp. 106-107. 

shall have a series of intersecting curves repre­
senting the relationship between the variables 
o and u. 

PREPARATION OF CHART. 

The complete formula for the thickness of a 
stratum was charted by the methods here 
described. (See Pl. VI.) The details of the 
process have to do mainly with the selection 
of suitable scale moduli and the selection of 
such values for the variables s, a, o, and u that 
the resulting scales will have an adequate and 
balanced calibration. 

Little need be said of the preparation of 
equation (2)- that is, t=t's. From the pres­
ence of the ± sign in the general formula it 
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results that both a positive and a negative 
scale for both t' and t are required. A scale 
modulus of 10 was adopted for the original 
drawing, calculation of the t scale being thus 
eliminated. The t' scale, though uncalibrated 
in the finished chart, was calibrated for pur­
poses of proj.ection in the actual work, and the 
calibration may be shown to be merely a 
natural sine scale. The scale modulus of 10 
likewise eliminated calculation in the prepara­
tion of this scale as well as in the preparation 
of the a scale. The numbers 1, 2, 3, etc., might 
have been used on the t scale in keeping with 
slide-rule practice, instead of 100, 200, 300, 
etc. But as this chart is to be used solely to 
compute the thickness of geologic strata, it has 
seemed best to the writer to calibrate the scale 
in terms of the probable range of answers that 
will be obtained. The s scale has accordingly 
been numbered to accord with this conven­
tion. 

In the plotting of equation (3)-that is, t' = 

sin a sino cos cr ±cos o sin cr-one point in par­
ticular requires explanation. For the posi­
tive form of the equation, only positive values 
oft' will result, but for the negative form of the 
equation both positive and negative values of 
t' will be obtained. Hence two nets of o and cr 

curves would be required, one with positive 
and one with negative values; but only a single 
a scale, the positive one, would be necessary. 
To avoid drafting these two nets of o and cr 

scales, both positive and negative a scales were 
drawn, and only one o and cr network. In 
using the chart, therefore, the positive values 
of a are used for a solution of the normal or 
positiv-e form of the general equation, and the 
negative values of a in solving the negative 
form of the general equation. This procedure 
is indicated on the chart. 

As stated, the curves of o and cr will ordi­
narily be calculated by some system of coordi­
nates and joined together into smooth curves. 
In the case of this particular equation (t' =sin 
a sin o cos cr ±cos o sin cr), however, the com­
pensating form of the functions of o and o-­
that is, sino cos cr against coso sin cr-results in 
a series of curves which are most easily pre­
pared by a projective method. It is unneces­
sary to go into an analysis of the method, but 
a statement of the method used is given. It is 
stated above that a preliminary sine calibra­
tion was used on the t' scale. The positive 

32333°-~~-4 

and negative end points (90° positions) of the 
a scale being used as points of projection, two 
series of radiating lines were drawn to the 
points of sine calibration on the t' scale. The 
intersection of these two sets of radiating lines 
gave the loci of the required curves. Each of 
these curves is tangent to the base of the isosceles 
triangle that bounds the network, and each 
emerges to intersect both sides of this triangle. 
Each curve serves a double purpose, therefore­
as au curve and as a curve of the complemen­
tary value of o. As it is hard to trace several 
curves past a rather flat zone of tangency, the 
curves are doubly named, in order to avoid that 
necessity. Every curve cuts every other curve, 
and hence an intersecting point for values of o 
and u can always be found . . Only one equivo­
cal condition will be noticed, and that is where 
complementary values of o and cr are given as 
field data. Under this condition, the same 
curve represents ·both values, and the point of 
tangency of the curve with the base of the 
isosceles triangle must be regarded as the point 
of intersection of a o curve and a cr curve-that 
is, one limb of the curve will be regarded as a 
o curve, and the other limb as a ;, curve. The 
u or angle of slope calibration was carried up to 
90°, and this is open to criticism by field geolo­
gists,for hiQ.sides of greater slope than 30° are 
rare. But the chart is also intended for meas­
uring geologic sections in mines as well as in 
the open, and for this purpose the complete 
range from 0° to 90° for cr is required. 

A small index chart showing five hypothetical 
points joined by a compound nomographic 
index line has been added as a guide to anyone 
using the chart. 

USE OF CHART. 

The use of the chart (Pl. VI) in obtaining 
the thickness of geologic strata is simple. 
At the left side of the chart is the. a 'scale, on 
which are plotted the azimuth angles between 
the strike of the rocks and the line of traverse. 
This calibration comprises both a positive 
and a negative scale, the positive one starting 
at the middle of the line and extending up­
ward and the negative one starting at the 
middle and extending downward. Use the 
upper scale where the angle of slope and angle 
of dip are in opposite directions and the lower 
scale where the angle of slope and angle of dip 
are in the same direction. 
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Trace the two lines representing given 
values of angle of slope and angle of dip to an 
intersection in the o-(J gridwork of curves. 
With a straight edge, or a transparent straight­
line index, connect the point on the a scale 
with the o-CJ intersection, and the continua­
tion of this line will give an intersection on the 
t' scale. Then connect the intersection on 
the t' scale with the point on the s scale which 
represents a given value of slope distance, and 
the continuation of this line gives an intersec­
tion on the t scale, which when read shows the 
thickness of the strata. It will be noticed 
that both the t' and t scales are divided into 
upper and , lower parts, just as the a scale is. 
Also there are two s scales. When the first 
operation gives an intersection on the upper 
t' scale the second operation is performed 
likewise on the upper s and t scales; and con­
versely when the first operation gives an inter­
section on the lower t' scale the second opera­
tion is performed on the lower s and t scales. 

The s and t scales are calibrated 100, 200, 
300, etc., instead of 1, 2, 3, etc., because the 
answers will usually be of that magnitude. 
If desired, however, these calibrations may 
be regarded as 1, 2, 3, or 10, 20, 30, or 1,000, 
2,000, 3,000, according to the use to which the 
chart is to be put, just as the ordinary slide­
rule calibrations are used. 

Another use to which the chart may be put, 
in addition to finding the thickness of strata, 
is the solution of equation (1) for any unknown 
quantity, if the other four are known. Thus, 
a, CJ, s, and t may be known, and it is desired 
to find o. A line connecting the t and s scales 
will intersect the t' scale. If this intersection is 
connected with the given point on the a scale, 
the resulting line will intersect the given (J line 
at a point which when read will show the 
required value of o. 

DISTANCE TO A STRATUM. 

OUTLINE. 

It is required to find the length of a tunnel, 
shaft, or drill hole from some selected point to 
some definite point on a stratum, when the 
following data are given: 

1. The horizontal and vertical location of the 
starting point of the tunnel, shaft, or drill hole. 

2. The horizontal and vertical location of a 
second point, which may lie anywhere on the 
surface of the stratum that is to be intersected. 

3. The azimuth angle between the strike of 
the rocks and the line connecting these two 
stations. , 

4. The azimuth angle 'between the strike of 
the rocks and the direction of the tunnel, 

. shaft, or drill hole. 
5. The· angle of dip of the rocks. 
6. The angle of dip of the tunnel, shaft, or 

drill hole. . 
In connection with Nos. 1 and 2, which may 

be eonsidered the beginning and end points of 
a traverse, any two of the following measure­
ments will suffice: (a) Angle of slope between 
the two stations, (b) difference in elevation 
between the two stations, (c) slope distance 
between the two stations, (d) horizontal dis­
tance between the two stations. Therefore six 
sets of data are given, and these, together with · 
the answer (the tunnel distance), will neces­
sarily produce a trigonometric equation of -
seven variables. 

This is the most general form of the problem 
of distance to a stratum. The problem usually 
considered by geologists, particularly in oii 
geology, and referred to as "depth to a stra­
tum, ' ' is a special case of the more general 
problem, wherein the line joining the two 
points is vertical. In such a case the pitch is 
90° and the line joining the two points has no 
horizontal azimuth angle. In other words, 
two variables are eliminated. The formula for 
the general problem will be developed, but for 
this paper only the formula for the special 
case-that is, depth to a stratum-will be 
charted. 

GEOMETRIC CONSTRUCTION. 

Let 81 (fig. 5) be the starting point of the 
tunnel, shaft, or drill hole, and let 8 2 be a point 
which is on the surface of the stratum that is 
to be intersected but is not in the horizontal 
plane through 81. Let 81 and 82 be repre­
sented by their projections on the horizontal 
plane through 81 and let 82 T be the strike of 
the stratum at 82 • The line 8 1C, parallel to 
82T, is also the strike line, - and AB is any 
reference line through 81 in the horizontal 
plane. Also let h be the horizontal distance 
from 81 to 82, s the slope distance, e the differ­
ence of elevation, (J the vertical angle at 8 1 

between the horizontal plane and the station 
point 8 2, and a the azimuth of the line joining 
81 and 82 with reference to the strike line. . 
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Pass a vertical plane through 81 and 82 and 
revolve this plane about the line joining the 
projections of 81 and 82 into the horizontal 
plane. The station 82 will fall on 8z' and the 
right-angled triangle 81828/ will show in true 
proportions the quantities()' s, h, and e. Pass 
a vertical auxiliary plane, perpendicular to the 
line of strike, through 82. Its trace on the 
horizon tal plan~ is the line P 1. Lay off 828/' 
equal to e and draw 8z''L', making the angle 
82L'8z'' equal to o, the dip of the stratum at 
station 82. On revolvjng the right-angled tri­
angle 8 28/'L' goo about the line 82L' and then 
goo about the vertical through 82, the point L' 
will fall on L. Through L draw the line LM 

The line T'M is the revolved trace of the verti­
cal auxiliary plane through 81M and the dip­
ping stratum through 82, the point K' is the 
revoved position of the point in which 81K 
pierces the inclined stratum, and M' is the 
revolved position of the point in which the 
vertical through M cuts the tunnel or drill hole. 
If the auxiliary plane is revolved back to its 
original position the projection of K' on the 
horizontal plane will be found at K, and line 
DK, drawn parallel to the strike line, is the 
projection, on the horizontal plane through 81 
of the line in which the dip plane is cut by 
plane P2, the horizontal plane through K. 

The distance 81 K' is the length of the tunnel 
required and is to be derived in terms of the 
known slope distance s and angles (), o, and p. 

TRIGONOMETRIC FORMULA. 

From the figure: 

81K'= 81 K = (81T+TM+MK) -
1

-
cos p cos p 

8 
T = h sin a s s1n a cos () 

1 sin~ sin~ 

TM= ~2L =-e-. 1 s s1n () 
s1n ~ tan o sin {3 sin ~ tan o 

MK M'K' MM' · HM 
=l cos p= T'H cos P 

.. p ~ butMM'=81Mtanp =(81T+TM) tanp 

------- 8 -(s sin a cos()+ s sin() ) t · 
..:.__--+----=~=-------------=::- - . . an p ( ) 

s1n ~ s1n ~ tan o -- a . 

FIGURE 5.-Geometric representation of the distance to a stratum when 
the dip of the stratum, the position of a point on the stratum relative 
to the starting point of measurement, and the horizontal and vertical 
directions of the line of measurement are given. 

parallel to the strike line. The lineLMis the line 
in which the dipping stratum intersects the hori­
zontal plane through 8 11 and the strike line 82 T 
is the line of intersection of the dippin~ plane 
with the plane through 81C and the stapon 82. 

Let 81 K be the projection of any slopihg tun­
nel or drill hole which rnakes an angle p with 
the horizontal plane and has an azimuth ~ 
with reference to the strike line. Through 
81 K pass a vertical plane. This plane will cut 
the strike line 82 T in point T and the line L}.1 
in point M. It! we revolve this plane about 
81M into the horizontal plane, the point T, 
whose distance above the horizontal plane is e, 
will fall at T', M will be unmoved, and 81Kr 
will be the revolved position of the tunnel or 
drill hole. The angle p will be shown in true 
value. Draw the line T'M, cutting 81K' inK'. 

s tan p . . ) 
= · · ~ t ~ (s1n a tan o cos () + s1n () s1n a.n u 

HM = TM: = . s sin () 
1 

_ _ __ _ _ _ (b) 
cos p s1n {3 tan o cos p 

T'H=e-HT=8 sin(J'-TMtan p 

. 8 S1n () 
= s s1n () - . {3 t ~ tan p s1n an u 

. 
8 ~1nt () . ~ (sin ~ tan o - tan p) 

s1n tJ an u 

__ __ (c) 

Then by substitution from equations (a), (b), 
and (c), 

MK _ s tan p sin a tan o cos () + sin () 
- sin {3 tan o sin ~ tan o ~ tan p 

From the values of 81T, TM, and MK just 
found 

8 T TM = s sin. a cos () + . s sin () } 
1 + s1n {3 s1n {3 tan o 

---.-----::---:
8

- - (sin a tan o cos () + sin ()) 
sin {3 tan o , 

MK = . 8 tan p sin a tan o cos () + sin (J' 

s1n {3 tan o · sin{3 tan o- ~an p 

' 
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Adding these two last equations and factoring, 
we get 

S1K=8(sinatanocoscr+sincr). {3t \ t s1n an - anp 
and as· 

S K'= SlK 
1 cos p 

Therefore 

S,K' ~s (sin a t:nO cos u +sin u) l 
·cos p (sin {3 tan o- tan p) 

By means of a similar though simpler con­
struction it may be shown that the formula for 
"depth to a stratum" is d= 8 (sin a tan o cos 
cr +sin cr), in which the term sin cr is positive or 
negative as is determined by the value of cr. 
It therefore appears that the expression 

1 
cos p (sin {3 tan o- tan p) 

in the equation for the value of d is a factor 
which must be applied where the hole is other 
than vertical. If the hole or shaft is vertical 
this factor reduces to unity. 

In the construction above given, the angles 
cr and o have been drawn in opposite directions, 
and also the angles cr and p in opposite direc­
tions. It has been found that four different 
formulas can result by the use of other con-

-structions, and the composite formula covering 
all cases is as follows: 

d ~ s (sm a tan 0 cos u ±sin u) l 
- 1 - - -- (7) 

·cos p (sin {3 tan o ± tan p) · 

The following rules govern the use of this 
composite formula: 

Use+ sin cr, when cr and o are in opposite direc­
tions. 

Use- sin cr, when cr and o are in the same direc­
tion. 

Use+ tan p, when cr and p are in opposite direc-
tions. , 

Use- tan p, when cr and pare in the same direc­
tion. 

GRAPHIC REPRESENTATION OF THE FORMULA. 

As stated before, only that part of formula 
(7) which relates to the measurement of 
"depth to a stratum" will be plotted here. 
The whole formula could be plotted by the 
same methods, but in this paper other methods 
will be given for its solution. 

Consider the formula d = 8 (sin a cos cr tan o 
±sin cr). This may be split into two formulas, 
~ike equation (1), and plotted by the same 
methods. Inserting an auxiliary variable t'~ 
we have 

t' = ~------ -- - - -- -- -- -- (8) 

t' = sin a cos cr tan o ± sin cr ______ ( 9) 

These two equations have been plotted exactly 
as equation (1) was plotted, and the result is 
shown on Plate VII. -The two charts, Plates 
VI and VII, are analogous in every respect, 
and no further explanation is required. 

USE OF CHART. 

The depth to a stratum is computed from 
the chart (Pl. VII) exactly as the thickness of 
strata is computed from Plate VI. All direc­
tions are identical. 

GRAPHIC SOLUTION OF RIGHT TRIANGLE. 

OUTLINE. 

In the consideration of the two preceding 
problems of thickness of strata and distance 

FIGURE 6.-Rigbt-angled triangle showing the relations of slope distance, 
horizontal distance, difference of elevation, and vertical angle between 
two station points. 

to a stratum, it has been assumed, in the right 
triangle determinad by the two stations sl 
and 82 and the plane of referenc~ (see fig. 6) 
that the slope distance and angle of slope were 
given. It may be, however, that instead of 
8 and cr any one of the five additional combina­
tions is given as follows: cr and h, cr and e, 8 and 
h, 8 and e, or hand e. It is desired to derive 
graphically the values of 8 and cr when any of 
th~se combinations are given. 

TRIGONOMETRIC FORMULAS. 

It may be seen at a glance that the solution 
of this problem is essentially a graphic repre­
sentation of the sine, cosine, and tangent con­
ditions of a right triangle. The formulas in­
volved are as follows: 

e = s sin cr _____________ ( 1 0) 

h = 8 cos (T - - - - - - - - - - - - - ( 11) 
e = h tan cr _____________ (12) 

• 
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Each of these equations is in such form that it 
may be written j 1 (u) = j 2 (v) · j 3 (w), and as 
shown before such equations are best plotted 
by means of the Z type of alinemen t chart. 

PREPARATION OF CHART. 

The method of plotting such equations has 
already been described, in connection with the 

0'~------~~co_s_u~sc-a~~--------~ 

0 

Ji scale 

FIGURE 7.-Diagram illustrating the combination of three alinement 
charts for the solution of right-angled triangles. 

plotting of equation (2). Two straight-line 
parallel scales, oppositely directed, are used to 
plotj1 (u) and either of the other two variables, 
in this )nstance j 3 (w). Both of these are nat­
ural scales. A straight line join-
ing the zero ends of these two 
scales carries the scale of the 
third variable, j 2 (v), and the 
calibrations are calculated by 
means of equation (4), as already 
explained. 

In order to plot in one diagram 
all three of these equations, it is 
necessary to use one or more of 
the same scales in different solu­
tions. Equations (10) and (11) 
have in common the variable 8 1 

wherefore it has seemed best to 
make a common scale of 8, ~n the 
solution of these two formulas. 
In figure 7 the values of e are 
plotted on CD, the values of sin 

The chart is now complete except for the 
solution of equation (12), which expresses the 
tangent condition. For this, the scales e and 
h, already plotted, are used in conjunction with 
a scale of tan u which is plotted on the line BD. 
An index of two lines intersecting at right · 
angles is used, such as EG and FH (figure 8). 
The method consists in passing the line EG 
through the given points on the e and h scales 
and then sliding the index along EG until the 
line FH passes through C. In this position the 
angle DCF= u, and it is required to compute a 
calibration of tan u on the line DB so that a 
reading indicated by the line HF on DB will 
give the required value of u. 

In figure 8 

DC : DS : sin ( 13 5° - u) : sin u 

DS 
DC sin u 

sin (135°- u) 
DC sin u 

sin (45°+u) 

DC Sln u 

sin 45 ° sin u +cos u 

Sln 0" DS =DB · . + l _____ ( 13) 
Sln CT COS CT 

Therefore the tan u calibration, expr~ssed in 
the diagram by successive values of DS, was 

.............. 
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u on AB, and the values of 8 on 
the diagonal joining the zero ends 
of these two scales. Two other 

FIGURE 8.-Diagram illustrating the use of an alinement chart for the solution of the tangent 

lines, however, AD and CB, may be drawn to 
complete the square, and on these the values 
respectively of cos u and h may be plotted. In 
this way a chart composed of five lines is pro­
vided for the plotting of e, h, 8, sin u, and 
cos 0". 

condition in right-angled triangles. ' 

computed by multiplying the length of the 

diagonal DB by the expression . si~ u 
Sln U COS CT. 

The chart representing the complete solu­
tion of a right-angle triangle is shown in 
Plate VIII. It is of universal use in the 
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graphic solution of right triangles, but it is 
here presented as an accessory chart, to be 
used in connection with the charts shown in 
Plates VI and VII. Thr,ee small index dia­
grams have been added as guides in the use 
of the chart. For the convenience of geolo­
gists, for whom this chart has been primarily 
constructed, the terms vertical distance, hori­
zontal distance, slope distance, and angle of 
slope have been placed on the chart to prevent 
ambiguity in its use. Also as in the preceding 
charts, the calibrations are given as 100, 200, 
300, etc., instead of 1, 2, 3, etc., for reasons 
stated on page 45. 

USE OF CHART. 

A straight edge or, better still, a piece of 
transparent or semifrosted celluloid with a 
black line ruled on the underside is required 
to solve equations (10) and (11). If, for ex­
ample, u and h are giv.en, connect the u value 
on AD (fig. 7) with the h value on BC, and the 
intersection on AC will give the value of s. 
Or if u and s are given, connect the u value on 
AD with the s value on AC, and the continua­
tion of this line intersecting BC will give the 
value of h on BC. Similar solutions are used 
when e, s, and u are involved. For equation 
(12) a piece of transparent or semifrosted 
celluloid will be required, on the underside of 
which are drawn two black lines intersecting 
at right angles. One of these lines is placed 
to pass through the given values of e and h, 
on CD and BC, respectively, and the other re­
quired to pass through the point C. Then the 
continuation of the line passing through C 
will show on DB the value of u. 

TRIGONOMETRIC COMPUTER. 

OUTLINE. 

Two good reasons exist for the use of a trig­
onometric computer. First, the geologist or 
surveyor will have numerous formulas to solve 
which, thoug:q essential, are not frequently used. 
It would be impracticable to have an aline­
ment chart for · every such formula, and it 
would be a laborious task to prepare so many 
such charts. Second, such charts, when re­
duced to a size which can be carried in the 
field, might not give sufficiently accurate results, 
particularly when the formulas are complex. 

The . alternative is soine graphic computing 
device, which is accurate enough for general 

purposes and compact enough to be carried 
without difficulty in the field. '):he straight 
slide rule at once suggests itself as an instru­
ment for this purpose, but it is open to two 
main objections-it is not of convenient shape 
to b~ easily and safely carried, and it is not 
easy to use for the solution of trigonometric 
formulas. 

To fill this distinct want, the writer has 
designed a circular slide rule, which will not 
exceed five inches in diameter nor one 
twenty-fifth of an inch in thickness, which will 
be the equivalent in accuracy of a · 12-inch 
straight slide rule, and which can easily be car­
ried in a notebook, just as a protractor is car­
ried. The principal practical advantages of 
this type of computer may be summadzed thus: 

1. It is compact and portable. 
2. It enables all computationf?, including 

trigonometric computations, to be accomplisHed 
with the same ease and by exactly the' same 
operations. 

3. It possesses a continuous scale, so that it 
is never necessary to reset the instrument, as 
it is with the straight slide rule, because the 
answer may be off the scale. 

4. Sufficient space is available through the 
use of concentric circles, or of a spiral, to plot 
the entire tangent scale, only half of which is 
plotted on the straight slide rule. This makes 
possible a direct setting to the tangents of 
angles between 45° and 90° and to the cotan­
gents of angles between 0° and 45°, doing 
away with the necessity of computing these 
values from reciprocals, as in the straight slide 
rule. 

CONSTRUCTION OF COMPUTER. 

A circular slide rule is constructed in exactly 
the same way as a straight slide rule, except 
that the calibration is computed and laid off 
in angular instead of linear magnitudes. In 
constructing a straight-slide rule x inches long, 
for multiplication and division, which is to 
range from a scalar value of y at one end to a 
scalar value of z at the other end, the scale 
modulus (M) is expressed as follows: 

M X 
~ . logy-log z 

The calibration is computed by multiplying 
the logarithms of each scalar value that will 
appear on the scale by M. 

For a circular or spiral slide rule, consider a 
circle of indeterminate diameter depending on 

' I 
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Sine condition. Connect value of angle of slope on the ri~ht­
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Cosine condition. Connect value of angle of slope on the upper 
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this line will intersect the slope-distance scale, giving the 
required value of slope distance. 
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the lower left-hand corner of the chart. The continuation 
of the second line will then intersect the diagonal line of 
slope scale, giving the required value of angle of slope. 
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the size desired for the finished product. 
Angular magnitudes are to be plotted, and as a 
circle is measurable in degrees, the san1e 
formula applies if x is considered to be the 
angular extent of the scale. If several con­
centric circles or a spiral of several turns is 
used to plot some one function, the circular 
scale modulus is expressed thus: 

M= t 360 
logy-log z 

where t is the number of concentric circles or 
the numbers of turns in the spiral. 

The circular slide rule here considered was 
computed with a circular scale modulus of 180 
instead of 360. The logarithmic range from 1 
to 10 is 1, but the logarithmi~ range f~om sin 
90° to sin 0° 45' is almost 2, .1nd it therefore 

any answer that is read off in tangents will 
theoretically be ambiguous, as the index gives 
two values, but practically the ambiguity is of 
no consequence, for the two values given by the 
index are so widely different that the operator, 
if he knows roughly the magnitude of the 
required answer, will be able to choose without 
difficulty the proper one. 

The calibration of this computer is shown in 
figure 9. The outer circle is the number scale; 
the next circle inward is the sine scale; and the 
tangent scale is placed inside the sine scale in 
a two-turn spiral. This disk is mounted to 
turn upon an underlying support which extends 
outward a quarter of an inch or more and is 
equipped with two overlying indexes, made 
of transparent celluloid, which are attached to 
the center of the disk. One of these indexes 

TRIGONOMETRIC COMPUTER 
J.B.Mertie,Jr. 

U.S.G.S. 

INSTRUCTIONS 
Multiplicition: Set multiplicand to stationary il)dex and 

movable index to zero line. Clamp movable mqex to 
lower support, and bring multiplier to. movable md~ 
Product will appear under statwnary mdex. 

Division: Set dividend to stationary index and movable 
index to divider. Clamp m9vable m~ex to lower sup­
port; and bring zero line to mo":able m~ex. Quotient 

will appear under stat10nary mdex. 

requires twice as long a scale 
to plot the desired range of 
sines as to plot the usual 
numerical scale. If the nu­
merical scale is plotted to a 
whole turn (360°), the sine 
range will require two turns, 
and if an answer is to be read 
off in sines, it will be am~ 
biguous, as the index will 
give two possible values. 
To a void this result an 
angular range of 180° was 
used for the numerical scale, 
which places the entire sine 
scale in one turn. The 
usual numerical calibration 
therefore takes but half of 
one turn, and to prevent 
the index from yielding an 
answer in the uncalibrateJ 
half of the number scale, 
the numerical range was 
doubled-that is, to read 
from 0.01 to 1, or from 0.1 
to 10, as desired. Such a 
scale therefore takes a whole 
turn. 

FIGURE 9.-Trigonometric computer for the solution of such problems as are readily solved with the 
12-inch straight slide rule. 

The tangent scale, if pl0tted with the same 
angular range as the sine scale, requires twice 
as long a scale as the sine scale, and in order to 
obtain this range the tangent scale is plotted 
in a two-turn spiral, the same circular scale 
n1odulus being used as before. As a result, 

turns freely, but the other is attached at the 
outside to the underlying support and is there­
fore immovable. It is intended that the 
freely moving index may be attached tempo­
rarily to the underlying support by pressure 
with the thumb and one finger. 
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USE OF COMPUTER. 

It is easy to remember how to manipulate 
this computer, because both in multiplication 
~nd division the start is made at the stationary 
Index, and the answer is found at the same 
place. Thus, in multiplication the multipli­
cand is set under the stationary index; the 
movable index is set to the zero line of the 
scale; and then, the movable index being 
clamped to the underlying support with the 
thumb and finger, the multiplier is brought 
under the movable index; the product is then 
found under the stationary index. In divi­
sion, the dividend is set under 'the stationary 
index, and the movable index is set to the 
divider and clamped; the zero of the scale is 
then brought to the movable index, and the 
quotient appears under the stationary index. 

The computer also enables the operator to 
read natural sines and tangents to at least three 
digits, and by using complementary angular 
values he can read the natural cosines and 
cotangents. Secants and cos~cants, though 
rarely used, may be obtained by taking the 
reciprocals respectively of cosines and sines. 

As before stated, there is a twofold numer­
ical range from 0.01 to 1 or from 0.1 to 10. In 
multiplying numbers by numbers, it is im­
material which of these scales is used· in fact 

' ' a multiplicand can be selected in one and a 
multiplier in another, and the product will be 
correct. In multiplying numbers by trigo­
nometric functions, however, the true meanings 
of these two number scales must be utilized if 
the required answer is to be read as a trigo­
nometric function. These two scales in reality 
represent any two number scales with a loga­
rithmic range of 1, in which the calibrations of 
one are ten times the value of the calibrations 
in the other. This condition is not unique to 
this computer, being present in all duplex 
slide rules, but is mentioned here merely to 
prevent possible confusion in the use of the 
computer. 

It is recommended that the computer be used 
in the field for all computations, thus saving 
the carrying of graphic charts or of a book of 
logarithm tables. The computer is in effect 
a graphic table of three-place logarithms 
arranged for general computations. 
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